Application on Homotopy-perturbation and Variational Iteration Methods for Heat Equation

نویسنده

  • A. Rezania
چکیده

Abstract: The traditional perturbation methods depend on a small parameter which is difficult to be found for real-life nonlinear and linear problems. To overcome address this shortcoming, two new powerful recent analytical methods are introduced to solve heat transfer problems in this work. One is He's variational iteration method (VIM) and the other is He’s homotopy-perturbation method (HPM). VIM is used to construct correction functional using general Lagrange multipliers identified optimally via by means of the variational theory, and the initial approximations can be freely arbitrarily chosen with unknown constants. HPM may be used to transform a difficult problem into a simple problem which can be easily solved. In this work, we have used HPM and VIM to solve the heat equations which are functions on time and space. This type of equation governs on numerous scientific and engineering experimentations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE APPLICATION OF THE VARIATIONAL HOMOTOPY PERTURBATION METHOD ON THE GENERALIZED FISHER'S EQUATION

In this paper, we consider the variational homotopy perturbation method (VHPM) to obtain an approximate series solution for the generalized Fisher’s equation which converges to the exact solution in the region of convergence. Comparisons are made among the variational iteration method (VIM), the exact solutions and the proposed method. The results reveal that the proposed method is very effectiv...

متن کامل

VARIATIONAL HOMOTOPY PERTURBATION METHOD FOR SOLVING THE NONLINEAR GAS DYNAMICS EQUATION

A. Noor et al. [7] analyze a technique by combining the variational iteration method and the homotopy perturbation method which is called the variational homotopy perturbation method (VHPM) for solving higher dimensional initial boundary value problems. In this paper, we consider the VHPM to obtain exact solution to Gas Dynamics equation.

متن کامل

APPLICATION OF HPM AND HAM TO THE FIRST FORM OF BLASIUS EQUATION

In this work, the Blasius equation is studied. Homotopy perturbation method (HPM) and homotopy analysis method (HAM) are applied to obtain its solution. Comparison with variational iteration method (VIM) is made to highlight the significant features of employed methods and their capability of handling nonlinear problems. The outcome shows the success of (HPM) and (HAM) for solving nonlinear pro...

متن کامل

Some New Analytical Techniques for Duffing Oscillator with Very Strong Nonlinearity

The current paper focuses on some analytical techniques to solve the non-linear Duffing oscillator with large nonlinearity. Four different methods have been applied for solution of the equation of motion; the variational iteration method, He’s parameter expanding method, parameterized perturbation method, and the homotopy perturbation method. The results reveal that approxim...

متن کامل

Optimization of solution Kadomtsev-Petviashvili equation by using hompotopy methods

In this paper, the Kadomtsev-Petviashvili equation is solved by using the Adomian’s decomposition method , modified Adomian’s decomposition method , variational iteration method , modified variational iteration method, homotopy perturbation method, modified homotopy perturbation method and homotopy analysis method. The existence and uniqueness of the solution and convergence of the proposed...

متن کامل

A new numerical scheme for solving systems of integro-differential equations

This paper has been devoted to apply the Reconstruction of Variational Iteration Method (RVIM) to handle the systems of integro-differential equations. RVIM has been induced with Laplace transform from the variational iteration method (VIM) which was developed from the Inokuti method. Actually, RVIM overcome to shortcoming of VIM method to determine the Lagrange multiplier. So that, RVIM method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012